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Abstract. In this paper, we report a novel way of constructing a new class of localized
coherent structures for the (2+ 1)-dimensional nonlinear Schrödinger (NLS) equation proposed
by Zakharov by utilizing the freedom (arbitrary function) in the linearized version of the bilinear
equation. The localized solutions for the potential are realized mainly by the interaction of the
line soliton with a curved soliton. We call such solutions ‘induced localized structures (induced
dromions)’ as the line soliton is induced by the arbitrary function present in the system.

Generating localized solutions of (2+ 1)-dimensional integrable nonlinear evolution
equations (NLEEs) continues to be a challenging contemporary problem even though it
has proved to be a rewarding exercise in some of the well known (2+ 1)-dimensional
integrable models such as the Davey–Stewartson (DS) equation [1, 2] and the Nizhnik–
Novikov–Veselov (NNV) equation [3, 4]. In both DS and NNV equations, which are the
symmetric generalizations of the KdV and NLS equations respectively, the physical field
is exponentially localized. On the other hand, even though the physical field of some
(2+ 1)-dimensional NLEEs may not be exponentially localized, one may be able to figure
out other interesting localized physical entities and this property has been exhibited by the
(2+ 1)-dimensional breaking soliton equation [5], where the potential introduced to take
care of the non-local term is found to be exponentially localized.

It is a known fact that a dromion solution is nothing but a two-soliton solution made out
of two non-parallel ghost solitons [6] (which are visible only in the absence of the physical
field). Hence, one has to look for a pair of non-parallel ghost solitons which in turn drive
the boundaries present in the system. However, in certain (2+ 1)-dimensional integrable
equations, the boundaries are not driven by the ghost solitons. The (2+ 1)-dimensional
NLS equation proposed by Zakharov [7] and discussed recently by Strachan [8] is the best
known example exhibiting this property. Thus a question arises as to how one can construct
localized solutions for such equations. The answer to this question opens up the possibility
of constructing a new class of localized solutions for the potential in the above-mentioned
(2+1)-dimensional NLS equation by making use of the freedom in the associated linearized
version of the bilinear equation. This unfolds a wide class of localized solutions for the
(2+ 1)-dimensional NLS equation which are not identified by the Hirota method using two
non-parallel ghost solitons alone. Recently, Sen-yue Lou [9] has used such a freedom in
the (2+ 1)-dimensional KdV equation to construct more general dromion solutions from
the basic dromion solutions reported in [4].
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We now take up the (2+ 1)-dimensional NLS equation proposed by Zakharov in the
form [8]

iqt = qxy + V q (1a)

Vx = 2∂y |q|2. (1b)

This equation has been shown to admit the Painlevé property and its soliton solutions have
been derived through a bilinear formalism [10]. Unlike the DS equation, this equation does
not admit ghost solitons and hence localized physical fields in the standard way. Now,
under the transformation

q = g/φ (2a)

V = 2∂xy logφ (2b)

equation (1) can be transformed into the Hirota form

iDt g · φ = DxDyg · φ (3a)

D2
xφ · φ = 2gg∗. (3b)

We now expandg andφ in the form of a power series as

g = εg(1) + ε3g(3) + · · · (4a)

φ = 1+ ε2φ(2) + ε4φ(4) + · · · . (4b)

To generate the one-line-soliton solution, we substitute the above series into equation (3)
and collect the resultant equations obtained by comparing various powers ofε to give

ε : ig(1)t = g(1)xy (5a)

ε2 : φ(2)xx = g(1)g(1)∗ (5b)

ε3 : ig(3)t − g(3)xy = −(iDt − DxDy)g
(1) · φ(2) (5c)

ε4 : 2φ(4)xx + D2
xφ

(2) · φ(2) = 2(g(3)g(1)∗ + g(1)g(3)∗) (5d)

and so on. Solving (5a), we obtain

g(1) =
N∑
j=1

exp(χj ) χj = kjx +mj(y, t)+ cj (6a)

wheremj(y, t) is an arbitrary function of (y, t) chosen such that

mj(y, t) = mj(ρ) = mj(y − ikj t) (6b)

andkj andcj are complex constants. To construct the one-soliton solution, we takeN = 1
and substituteg(1) in (5b) to give

φ(2)xx = exp(χ1+ χ∗1 ). (7)

Solving the above equation, we get

φ(2) = exp(χ1+ χ∗1 + 2ψ) exp(2ψ) = 1

4k2
1R

k1R = Rek1. (8)

Usingg(1) andφ(2) in (5c) and (5d), one can show thatg(j) = 0 for j > 3 andφ(j) = 0 for
j > 4. Now, using equations (2) and (6a) and (8), the physical fieldq and the potentialV
assume the following form

q = k1R sech(χ1R+ ψ) exp(iχ1I) (9a)

V = 2k1R(m1R)ρR sech2(χ1R+ ψ) ρR = y + k1It k1I = Im k1 (9b)
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where the function(m1R)ρR is arbitrary (asm1(ρ) is arbitrary). It is evident from the above
equation (9) that both the physical fieldq and the potentialV remain finite on the curve

C = χ1R+ ψ = k1Rx +m1R(y, t)+ c1R = 0 (10)

and decay exponentially everywhere (asx, y →∞) apart from the curve (C = 0) given by
equation (10). One may call such line solitons (which do not decay along a straight line)
as ‘curved solitons’ [9].

Looking at the nature of the solutions (9a) and (9b), we see that both the physical fieldq
and the potentialV vanish when the parameterk1R→ 0. But as(m1R)ρR → 0, the potential
V alone vanishes whereas the field variableq survives. This indicates that one can generate
localized structures for the potentialV by choosing the derivative of the arbitrary function
m1R to be localized in theρR direction. In other words, by choosing(m1R)ρR to be localized
in the ρR direction, one can easily set up the interaction of the line soliton(m1R)ρR with
the curved soliton sech2(χ1R+ ψ) so that the line and curved solitons disappear (ghosts)
resulting in the formation of a singly localized structure. Thus, a single dromion is localized
around the point of interaction of the curved and line solitons. For example, if one chooses

(m1R)ρR = sech2(ρR) (11)

we have a one dromion for the potentialV as

V = 2k1R sech2(ρR) sech2(k1Rx + tanh(ρR)+ γ ) ρR = y + k1It (12a)

which decays exponentially in all directions. In other words, we have induced a one-
dimensional soliton at the derivative of the arbitrary functionm1R(ρR) to generate a localized
solution for the potentialV and hence we call them ‘induced localized structures’. The
dromion solution given by equation (12) is driven by a curved soliton (C = 0) and a line
soliton (ρR = 0). One can indeed replace the line soliton by a curved soliton so that the
dromion can be driven by two curved solitons as the argumentρR can be replaced by an
arbitrary function as

ρR→ h(ρR) = h. (12b)

Thus, a (2+ 1)-dimensional dromion can be driven not only by a line soliton and a curved
soliton, but also by two curved solitons. As the functionmjR(ρR) is arbitrary, one can
construct even richer structures as demonstrated by Sen-yue Lou [10] for the (2+ 1)-
dimensional KdV equation. For example, we can choose an algebraic form

(m1R)ρR =
1

(ρR+ ρ0)2+ 1
(12c)

to give

V = 2k1R

[
1

(ρR+ ρ0)2+ 1

]
sech2

(
k1Rx +

∫
1

(ρR+ ρ0)2+ 1
dρR+ γ

)
. (12d)

One can indeed generalize this procedure to construct multidromions by takingN line
solitons to give

VN = 2k1R

( N∑
j=1

(mjR)ρR

)
sech2

(
k1Rx +

∑
j

mjR(ρR)+ ψ
)
. (13)

The above expression describes a localized structure made out ofN line solitons and a curved
soliton. In general,N line solitons can be chosen conveniently to decay exponentially,
algebraically or in an oscillatory fashion.
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From the above discussion, we infer that the first type of multidromion is being driven
by a curved ghost soliton andN line solitons. Now, a question arises of whether one can
find a multidromion solution driven by two or more curved ghost solitons. For example, to
construct a two dromion solution, we takeN = 2 and hence we have from equation (6a)

g(1) = exp(χ1)+ exp(χ2). (14)

Substituting this in (5b), (5c) and (5d) and solving them accordingly, we obtain

g(3) = L1 exp(χ1+ χ∗1 + χ2)+ L2 exp(χ2+ χ∗2 + χ1) (15a)

φ(2) = P1 exp(χ1+ χ∗1 )+ P2 exp(χ1+ χ∗2 )+ P3 exp(χ2+ χ∗1 )+ P4 exp(χ2+ χ∗2 ) (15b)

φ(4) = P5 exp(χ1+ χ∗1 + χ2+ χ∗2 ) (15c)

where the parametersL1, L2, P2 andP3 are complex (P2 = P ∗3 ) andP1, P4 andP5 are real
and they can be chosen conveniently in accordance with the equation (3). Using (14) and
(15), the potentialV becomes after choosingk1 = k2 (for illustration)

V = G

F

G = 2[4k1R(m1R)ρ1RP1 exp(χ1+ χ∗1 )+ 2k1RP2(m1ρ +m∗2ρ) exp(χ1+ χ∗2 )
+2k1RP3(m2ρ +m∗1ρ) exp(χ2+ χ∗1 )+ 4k1R(m2R)ρ1RP4 exp(χ2+ χ∗2 )
+8k1R(m1R+m2R)ρ1RP5 exp(χ1+ χ∗1 + χ2+ χ∗2 )+ 4k1R(m2R)ρ1RP1P5

× exp(2[χ1+ χ∗1 ] + χ2+ χ∗2 )+ 2k1R(m
∗
1ρ +m2ρ)P2P5

× exp(2χ1+ χ∗1 + χ2+ 2χ∗2 )+ 2k1R(m1ρ +m∗2ρ)P3P5

× exp(χ1+ 2χ∗1 + 2χ2+ χ∗2 )+ 4k1R(m1R)ρ1RP4P5

× exp(χ1+ χ∗1 + 2[χ2+ χ∗2 ])]

F = [1+ P1 exp(χ1+ χ∗1 )+ P2 exp(χ1+ χ∗2 )+ P3 exp(χ2+ χ∗1 )+ P4 exp(χ2+ χ∗2 )
+P5 exp(χ1+ χ∗1 + χ2+ χ∗2 )]2

χ1 = k1x +m1(ρ1) χ2 = k1x +m2(ρ1). (16)

Looking at the above solution, it is clear that it contains two arbitrary functionsm1 and
m2 and hence by properly choosing them as given by equations (11) and (12c), one can
generate a two-dromion solution even though the solution does not have a compact form.
Similarly, more generalized localized solutions can be constructed.

In this paper, by utilizing the freedom in the bilinearized version of the linear equation of
the (2+1)-dimensional NLS equation, we have generated a new class of ‘induced localized
structures’. We are investigating whether the existence of such freedom in the bilinearized
version of the linear equations of other (2+ 1)-dimensional nonlinear partial differential
equations such as the sine–Gordon equation [11] can be properly harnessed to generate
other kinds of localized solutions.

Acknowledgments

RR wishes to thank the Council of Scientific and Industrial Research (CSIR) for providing a
Senior Research Fellowship. The work of ML forms part of research projects sponsored by
the Department of Atomic Energy (DAE) and the Department of Science and Technology
(DST), India.

References

[1] Boiti M, Leon J J P,Martina L and Pempinelli F 1988Phys. Lett.132A 432
[2] Fokas A S and Santini P M 1990Physica44D 99
[3] Athorne C and Nimmo J J C1992 Inverse Problems8 321



The (2+ 1)-dimensional nonlinear Schr¨odinger equation 3233

[4] Radha R and Lakshmanan M 1994J. Math. Phys.35 4746
[5] Radha R and Lakshmanan M 1995Phys. Lett.197A 7
[6] Hietarinta J 1990Phys. Lett.149A 113
[7] Zakharov V E 1980Solitonsed R K Bullough and P J Caudrey (Berlin: Springer)
[8] Strachan I A B 1992 Inverse Problems8 L21

Strachan I A B 1993J. Math. Phys.34 243
[9] Sen-yue Lou 1995J. Phys. A: Math. Gen.28 7227

[10] Radha R and Lakshmanan M 1994Inverse Problems10 L29
[11] Radha R and Lakshmanan M 1996J. Phys. A: Math. Gen.29 1551


